전산유체역학 기초

강의소개
과목명 전산유체역학 기초 (Fundamentals of Computational Fluid Dynamics)
교과목번호 M2795.003500 학점 3
수업목표 - 유체현상과 관련된 물리적/수학적 지식을 바탕으로 고급전산유체역학 지식을 습득하기 위한 기초적
  입문과정 학습.
- 유동의 지배방정식과 연관된 간단한 편미분 방정식의 기본적인 이산화(discretization) 과정을 배우고 
  유한차분법(Finite Difference Method, FDM) 및 유한체적법(Finite Volume Method, FVM)과 관련된
  기본개념 이해.
- 유한차분법 및 유한체적법에 기반한 기초적 수치기법을 배우고 이를 바탕으로 1차원 및 2차원 모델방정식을
  계산하는 코딩 연습 및 계산결과 분석.
- EDISON_CFD를 통한 계산실습 및 term project 수행.
교재 및
참고문헌

1. Lecture Notes.

2. Computational Fluid Mechanics and Heat Transfer
  by Pletcher, Tannehill and Anderson, CRC Press.

3. Computational Fluid Dynamics, Vol. 1 
  by Hoffmann and Chiang, Engineering Education System.

4. 온라인 강의 '전산유체역학(Computational Fluid Dynamics, CFD) 이론 및 실습'
  Available from (https://mooc.edison.re.kr/cfd/intro.html)

평가방법 과제물(25%), 기말고사(45%), 프로젝트(25%), 출석 및 기타 (5%)
강의계획

Chap 1. Introduction and Classification of Partial Differential Equations.
 - Brief introduction of computational fluid dynamics.
 - Second-order linear PDE, Elliptic PDE, Parabolic PDE, Hyperbolic PDE.
 - Systems of equations, initial and boundary conditions.
Chap 2 : Basic Discretization and Linear Stability.
- Basic discretization options, Finite difference approximation, Basic temporal discretization.
- Concept of stability, Modified equation, Numerical dissipation and numerical dispersion.
- Linear stability analysis and Von Neumann stability, CFL condition, Relationship among consistency,
  stability and convergence.
Chap 3: Model Equation of Parabolic PDE : Heat Equation.
- Basic implicit and explicit schemes, Stability analysis.
- Multi-dimensional cases, Basic discretization, Fractional step method, ADI scheme and AF-ADI scheme.
Chap 4: Model Equation of Elliptic PDE: Laplace Equation.
- Basic discretization, Matrix inverse problem, Direct method, Inversion of tri-diagonal matrix.
- Iteration(relaxation) method, Basic convergence and stability analysis, Jacobi method,
  Gauss-Seidel method.

- Over-relaxation method, Multigrid method.
Chap 5: Model Equation of Hyperbolic PDE: Advection Equation.
- Definition of hyperbolic PDE, Basic theory of scalar conservation law, Finite volume discretization
  and conservative scheme.
- Basic numerical schemes for hyperbolic PDE (Lax-Friedrich scheme, Upwind method,
  Lax-Wendroff scheme, 
MacCormack scheme, Beam-Warming scheme, Crank-Nicolson scheme).
- Time-integration method (Multi-step method, Multi-stage Runge-Kutta method)
- Gibbs phenomenon, Godunov's barrier theorem on monotonicity, Non-linear scheme
  and concept of total variation (optional).
Review & Q/A.
EDISON_CFD Practices, Term Project and Final Exam.